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Analytic solutions of some coupled nonlinear equations

F. T. Hioe
Department of Physics, St. John Fisher College, Rochester, New York 14618

~Received 17 July 1997!

New analytic solutions for coupled nonlinear Schro¨dinger, coupled nonlinear equations of higher order,
coupled Korteweg–de Vries, and coupled Boussinesq equations are presented. Applications to solitary waves,
e.g., in birefringent optical fibers, are discussed.@S1063-651X~97!00612-0#

PACS number~s!: 42.65.Tg, 42.81.Dp, 03.40.Kf
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I. INTRODUCTION

The problem of integrability and nonintegrability of
Hamiltonian system with two degrees of freedom has bee
subject of considerable interest for many years@1#. The sec-
ond invariants, and methods for their search, for many tw
dimensional Hamiltonian systems, were summarized
given by Hietarinta@2#. When a system is known to be inte
grable, some, but not necessarily all, analytic expressions
the time evolution of the two spatial coordinatesx and y
have been found in some cases.

Interests in finding specific analytic solutions forx(t) and
y(t) have come from another field in physics: their applic
tions to the problem of finding periodic solitary waves
birefringent optical fibers. The slowly varying complex com
ponents or envelopesfm(z,t), m51,2, of the electric fields
of the two mutually orthogonal polarizations propagati
along thez axis satisfy the following pair of coupled nonlin
ear Schro¨dinger-like equations@3#:

if1z1f1tt1kf11p~ uf1u21uf2u2!f11q~f1
21f2

2!f1
!50,

if2z1f2tt2kf21p~ uf1u21uf2u2!f21q~f1
21f2

2!f2
!50,
~1.1!

wherep andq are dimensionless parameters characteristi
the medium that satisfy the relationp1q51, k is related to
the birefringence of the fiber, and the subscripts 1 and 2
f are to be distinguished from the subscripts inz and t,
which denote derivatives with respect toz and t, respec-
tively. Christodoulides and Joseph@4# and Florjanczyk and
Tremblay @5# showed that we may first search for th
stationary-wave solution of the form

f1~z,t !5x~ t !exp~ iVz!,

f2~z,t !5y~ t !exp~ iVz!, ~1.2!

where V is a real constant, andx(t) and y(t) are ~real!
functions of t only. Equations~1.1! are shown to reduce to
the following, which we shall call thedynamicalcoupled
nonlinear Schro¨dinger equations:

ẍ2Ax1~x21y2!x50,
~1.3!

ÿ2By1~x21y2!y50,
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whereA5V2k andB5V1k. Equations~1.3! are the dy-
namical equations of motion for a system whose Ham
tonian is

H5 1
2 ~ ẋ21 ẏ2!2 1

2 ~Ax21By2!1 1
4 ~x21y2!2, ~1.4!

whereẋ denotesdx/dt, etc. The Hamiltonian system~1.4! is
usually referred to as a coupled quartic oscillator syste
From the nontraveling waves~1.2!, Florjanczyk and Tremb-
ley @5# showed that traveling waves can be constructed fr

f18~z,t !5f1~z,t2z/v !exp@ i ~ t2z/2v !/~2v !#,
~1.5!

f28~z,t !5f2~z,t2z/v !exp@ i ~ t2z/2v !/~2v !#,

wherev is the velocity of the waves, and that they satis
Eqs.~1.1!. Following the work of Florjanczyk and Tremble
who presented an analytic periodic wave solution for E
~1.3!, Kostov and Uzunov@6# presented three additional pe
riodic solutions of Eqs.~1.3!.

In this paper, we present three new periodic wave so
tions of Eqs.~1.3! in Sec. II. We also studied other couple
dynamical systems, and present periodic wave solutions f
special case of coupled nonlinear equations of higher o
in Sec. III, three periodic wave solutions for couple
Korteweg–de Vries~KdV! equations in Sec. IV and fo
coupled Boussinesq equations in Sec. V. Solitary wave s
tions for the corresponding coupled equations are also
sented.

II. COUPLED NONLINEAR SCHRO¨ DINGER „CNLS…

EQUATIONS

As we mentioned above, four periodic wave solutio
have been found previously for the dynamical CNLS eq
tions ~1.3!. Because the regimes for which the solutions a
ply were not explicitly given in some cases, we shall pres
them here, with the specifications for the regimes in wh
they apply, with the three new solutions we found. The se
solutions, numbered~I! to ~VII !, are presented in the orde
that appears to be most natural; the first three are ‘‘sing
solutions in which each of thex(t) andy(t) is expressed in
terms of a single Jacobian elliptic function~of modulusk!,
while the remaining four are ‘‘product’’ solutions in whic
each of thex(t) andy(t) is expressed in terms of product o
two Jacobian elliptic functions. Solution~V! was given by
Florjanczyk and Trembley@5# and solutions~I!, ~IV !, and
~VI ! were given by Kostov and Uzunov@6#. Solutions~II !,
7253 © 1997 The American Physical Society
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TABLE I. Three solutions~A!, ~B!, and~C! for coupled NLS, KdV, and Boussinesq equations.

~A! ~B! ~C!

« 11 11 21
c1 ,0 ,0 .0
b1 .0 .0 ,0
b2 ,0 ,0 ,0

ub1u>2ub2u 2ub2u>ub1u> 1
2 ub2u ub2u>ub1u

k2 ub1u1ub2u
2ub1u2ub2u

2ub1u2ub2u
ub1u1ub2u

2ub1u1ub2u
ub1u12ub2u

a 1
2A 1

3 (2ub1u2ub2u) 1
2A 1

3 (ub1u1ub2u) 1
2A 1

3 (ub1u12ub2u)
f 1 sn(aj,k) k sn(aj,k) (k/k8)cn(aj,k)
f 2 cn(aj,k) dn(aj,k) (1/k8)dn(aj,k)
e-
s

d

-

n

o

ted

dy-
~III !, and ~VII ! are the new ones. In all the solutions pr
sented, we assumeB.A.0, and more restrictive condition
apply for some.

~I! x5C1 sn(at,k), y5C2 cn(at,k), where a25(B
2A)/k2, C1

25a222a2k21B, C2
25a21a2k21A; it is

valid in the regime whereC1
2,C2

2, C1
2<B, C2

2>A, andC2
2

2A>2(2C1
21B).

~II ! x5C1k sn(at,k), y5C2 dn(at,k), where a25B
2A, C1

2522a21a2k21B, C2
25a21a2k21A; it is valid

in the regime whereC1
2,C2

2, C1
2<B, C2

2>A, 2(2C1
21B)

>C2
22A> 1

2 (2C1
21B).

~III ! x5C1(k/k8)cn(at,k), y5C2(1/k8)dn(at,k), where
a25(B2A)/k82, C1

252a22a2k22B, C2
25a222a2k2

1A, and wherek8 is the complementary modulus; it is vali
in the regime whereC2

2<A.
~IV ! x5Ck sn(at,k)cn(at,k), y5C cn(at,k)dn(at,k),

where C252(4B2A)/5, a25(B2A)/3, k25(4B
2A)/@5(B2A)#; it is valid for B>4A.

~V! x5C sn(at,k)dn(at,k), y5C cn(at,k)dn(at,k),
where C252(4B2A)/5, a25(4B2A)/15, k255(B
2A)/(4B2A); it is valid for A,B<4A.

~VI ! x5Ca2k2 sn(at,k)cn(at,k), y5Ca2 dn2(at,k)
1C1 , where C2518/(B2A), C15C(2B14A)/5, a2

5(1/10)@2B23A1A 5
3 (B22A2)#,

k25

2A5

3
~B22A2!

A5

3
~B22A2!12B23A

;

it is valid for B>4A.
~VII ! x5Ca2k sn(at,k)dn(at,k), y5Ca2 dn2(at,k)

1C1 , whereC2518/(B2A),

C15
C

2
@ 1

5A 5
3 ~B22A2!1 1

3 ~B2A!#,

a25 1
5
A 5

3 ~B22A2!, k25

A 5
3 ~B22A2!12B23A

2A 5
3 ~B22A2!

.

It is valid in the regime where 8A/7<B<4A.
For Eqs.~1.3!, besides the Hamiltonian~1.4!, which is the

first invariant, the second invariant@7# is I 5(xẏ2 ẋy)2

1(A2B)(2ẋ222Ax21x41x2y2).
The seven solutions forx andy thus provide seven soli

tary wave solutions for Eqs.~1.1!. As shown by Florjanczyk
and Trembley@5#, the following substitutions

F15~f11 if2!/&, F25~f12 if2!/&,

z5~g11!Z/2, t5Ag11T, ~2.1!

q5~g21!/~g11!, k52s/~g11!,

transform Eqs.~1.1! into

iF1Z1 1
2 F1TT1sF21~ uF1u21guF2u2!F150,

~2.2!

iF2Z1 1
2 F2TT1sF11~ uF2u21guF1u2!F250.

For the special case ofg51, we can use the transformatio
suggested by Be´langer and Pare´ @8#,

F5C1~z,t !cos~sz!1 iC2~z,t !sin~sz!,

C5C2~z,t !cos~sz!1 iC1~z,t !sin~sz!, ~2.3!

to transform Eqs.~2.2! into the standardsymmetricCNLS
equations given by

iC1z1C1tt1~ uC1u21uC2u2!C150,

iC2z1C2tt1~ uC1u21uC2u2!C250. ~2.4!

In contrast to the known solution@9# of Eqs. ~2.4!, we
present here newsuperpositionsolutions for which~a! each
of the C1 and C2 is expressed in terms of the sum of tw
solitary wavesf 1(j) and f 2(j), where

j52~ t2z/v !, ~2.5!

and v is the velocity of the waves, and~b! there are three
different pairs of elliptic functions forf 1(j) and f 2(j) ap-
plicable to various regimes. A factor of 2 has been inser
for the definition ofj in Eq. ~2.5! because Table I to be
presented will be shown to be applicable also for other



t

i

-
ti

e

o

th
nt

n

by

ta-

d in

ify
e

n

56 7255ANALYTIC SOLUTIONS OF SOME COUPLED . . .
namical systems for whichj is defined differently. Specifi-
cally, the superposition solutions are expressed by

Cm5 (
n51

2

Cmnf n~j!expF i S Knz1
t

2v D G , m51,2,

~2.6!

where the four amplitudesCmn are required to satisfy

C11C121C21C2250, ~2.7!

but none of them needs to be equal to zero generally. Le
define

b152K12
1

4v2 1C12
2 1C22

2 ,

b252K22
1

4v2 1«~C11
2 1C21

2 !,

c15C11
2 1C21

2 2«~C12
2 1C22

2 !, ~2.8!

where« can be equal to11 or 21. The three different pairs
of elliptic functions for f 1(j) and f 2(j) are given, in col-
umns marked~A!, ~B!, and~C!, together with the conditions
that specify the regimes in which they are applicable,
Table I. A condition

«ub1u1ub2u5 3
2 uc1u ~2.9!

must be satisfied for any one of the solutions~A!, ~B!, or ~C!,
which imposes another condition, besides Eq.~2.7!, on the
amplitudes of the waves. Substituting thef 1(j) and f 2(j)
from Table I into Eq.~2.6!, and substituting Eq.~2.6! into
Eqs.~2.3! give three new solutions of Eqs.~2.2! for the spe-
cial case ofg51.

III. A SPECIAL CASE OF COUPLED NONLINEAR
EQUATIONS OF HIGHER ORDER

Instead of Eq.~1.4! for a coupled quartic oscillator sys
tem, let us consider a circularly symmetric coupled sex
oscillator system whose Hamiltonian is

H5 1
2 ~ ẋ21 ẏ2!2 1

2 A~x21y2!1 1
6 ~x21y2!3 ~3.1!

for which the coupled equations of motion are

ẍ2Ax1~x21y2!2x50,
~3.2!

ÿ2Ay1~x21y2!2y50.

SinceH can be expressed inr 5(x21y2)1/2 only, it is clearly
an integrable system. We have found a simple analytic p
odic solution of Eqs.~3.2! for the caseA.0; it is x
5$C@dn(at,k)1cn(at,k)#%1/2, y5$C@dn(at,k)2cn(at,
k)] %1/2, where a254A/(22k2), C253A/@4(22k2)#, 0
<k2<1. The second invariant is obviously the angular m
mentum I 5xẏ2 ẋy, which for our solution is equal to
Cak8.

Applications of the above result can be seen from
following example. Suppose two real field compone
us

n

c

ri-

-

e
s

f1(z,t) andf2(z,t), which propagate along thez axis sat-
isfy the following coupled nonlinear equations:

f1zz1bf1tt2Af11~f1
21f2

2!2f150,
~3.3!

f2zz1bf2tt2Af21~f1
21f2

2!2f250.

A solitary wave solution of Eq.~3.3! wheref1(j) andf2(j)
depend onj5z2vt, v being the velocity of the waves, ca
be easily deduced. It isf15$C@dn(gj,k)1cn(gj,k)#%1/2,
f25$C@dn(gj,k)2cn(gj,k)#%1/2, where g254A/@(2
2k2)(11bv2)], C253A/@4(22k2)#, 0<k2<1.

IV. COUPLED KORTEWEG –DE VRIES EQUATIONS

Consider the dynamical coupled KdV equations given

x̂11b ẋ11R~x11x2!ẋ150,
~4.1!

x̂21b ẋ21R~x11x2!ẋ250,

whereb and R are real constants and where for later no
tional purposes, we have replacedx and y by x1 and x2 ,
respectively. Our analytic periodic solutions are expresse
the form

xm5 (
m51

2

Cmnf n
2, m51,2, ~4.2!

where theC’s are constants andf 1(t) and f 2(t) will be given
in terms of Jacobian elliptic functions. First let us define

b15~C121C22!R1b, ~4.3a!

b25«~C111C21!R1b, ~4.3b!

c15@C111C212«~C121C22!#R, ~4.3c!

Three different pairs of elliptic functionsf 1(t) and f 2(t) for
Eqs.~4.2! are given, together with the conditions that spec
the regimes in which they are applicable, in Table I, wherj
is replaced byt.

The corresponding coupled KdV equations forf1(z,t)
andf2(z,t) are

f1zzz1b8f1t1R~f11f2!f1z50,
~4.4!

f2zzz1b8f2t1R~f11f2!f2z50.

The solitary wave solutions of Eq.~4.4! for which f1(j) and
f2(j) depend on

j5z2vt ~4.5!

only, wherev is the velocity of the waves, can be writte
down as in Eqs.~4.2!. The solutions of Eqs.~4.4! are ob-
tained by replacingxm(t) by fm(j), f n(t) by f n(j), in Eqs.
~4.2!, wherej is given by Eq.~4.5!, i.e.,

fm5 (
n51

2

Cmnf n
2. ~4.6!

Instead of Eqs.~4.3!, theb’s andc are here defined by
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b15~C121C22!R2b8v, ~4.7a!

b25«~C111C21!R2b8v, ~4.7b!

c15@C111C212«~C121C22!#R. ~4.7c!

Table I gives three solutions of Eq.~4.6! for Eq. ~4.4!. Note
thatj is defined here by Eq.~4.5!, which is different from the
j defined by Eq.~2.5! for the CNLS equations.

V. COUPLED BOUSSINESQ EQUATIONS

Consider the dynamical coupled Boussinesq equat
given by

x1tttt1bx1tt1R@~x11x2!x1t# t50,
~5.1!

x2tttt1bx2tt1R@~x11x2!x2t# t50.

As for the dynamical coupled KdV equations, we found an
lytic periodic solutions of Eqs.~5.1! in the form expressed
also by Eqs.~4.2!. With theb’s andc defined as in Eqs.~4.3!
whereb andR are now constants appearing in Eqs.~5.1!, the
same three pairs of elliptic functionsf 1(t) and f 2(t) given in
Table I ~wherej is replaced byt! substituted into Eqs.~4.2!
give solutions of Eqs.~5.1!, for the three regimes in which
they are applicable.

The corresponding coupled Boussinesq equations are

f1zzzz1a8f1zz1b8f1tt1R@~f11f2!f1z#z50,
~5.2!

f2zzzz1a8f2zz1b8f2tt1R@~f11f2!f2z#z50.
ct
.

s

-

Solitary wave solutions of Eqs.~5.2! in which f1(j) and
f2(j) depend onj5z2vt only @the same definition ofj as
defined by Eq.~4.5!# can be expressed as in Eqs.~4.6!. In-
stead of Eqs.~4.7!, theb’s andc are here defined by

b15~C121C22!R1a81b8v2, ~5.3a!

b25«~C111C21!R1a81b8v2, ~5.3b!

c15@C111C212«~C121C22!#R. ~5.3c!

With these definitions ofb’s and c, Eqs. ~4.6! and Table I
@wherej is defined by Eq.~4.5!# give three solutions of Eqs
~5.2!.

Our solutions reveal a great deal of similarity between
solutions of coupled KdV and coupled Boussinesq equatio

Finally, we remark that~i! the prospect that shape
preserving Jacobian elliptic ‘‘pulse trains’’ in optical fibe
can be produced and observed appears to have become
possibility following the first experimental observation of th
evolution of an arbitrarily shaped input optical pulse-train
the shape-preserving Jacobian elliptic pulse-train co
sponding to the Maxwell-Bloch equations, as reported
cently by Shultz and Salamo@10#; and ~ii ! the possibility of
controlling the pulse propagation by varying the amplitud
~the C’s in the solutions presented! of the coupled waves
@11# should find practical applications in the near future.
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