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Analytic solutions of some coupled nonlinear equations
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New analytic solutions for coupled nonlinear Satirmer, coupled nonlinear equations of higher order,
coupled Korteweg—de Vries, and coupled Boussinesq equations are presented. Applications to solitary waves,
e.g., in birefringent optical fibers, are discussesil063-651X%97)00612-Q

PACS numbgs): 42.65.Tg, 42.81.Dp, 03.40.Kf

[. INTRODUCTION whereA=Q— x andB=Q + k. Equationg1.3) are the dy-
namical equations of motion for a system whose Hamil-
The problem of integrability and nonintegrability of a tonian is
Hamiltonian system with two degrees of freedom has been a
subject of considerable interest for many yddrk The sec-
ond invariants, and methods for their search, for many two-

dimensional Hamiltonian systems, were summarized an&vherex denotesix/dt, etc. The Hamiltonian systefd.4) is

given by Hietarintd2]. When a system is known to be inte- usually referred to'as a coupled qugrtic oscillator system.
grable, some, but not necessarily all, analytic expressions f prom the nontraveling waveid.2), Florjanczyk and Tremb-

the time evolution of the two spatial coordinatesand y ey [5] showed that traveling waves can be constructed from

H=2(x*+y)—3(AC+BY)+3(+y?)? (1.9

have been found in some cases. / -
1= t—z/v)e t—2z/2v)/(2v)],
Interests in finding specific analytic solutions #dt) and P12 =izt 2v)exI(t=220)/(2v)] (1.5
y(t) have come from another field in physics: their applica- bh(2,t) = oz, t—2Iv)exi (t— 2120 )1(20)],

tions to the problem of finding periodic solitary waves in

birefringent optical fibers. The slowly varying comple>_< COM- wherey is the velocity of the waves, and that they satisfy
ponents or envelopedm(z,t), m=1,2, of the electric fields Eqs_ (1.1). Following the work of Florjanczyk and Trembley
of the two mutually orthogonal polarizations propagatingwho presented an analytic periodic wave solution for Egs.
along thez axis satisfy the following pair of coupled nonlin- (1 3) 'Kostov and UzunoV6] presented three additional pe-
ear Schrdinger-like equation$3]: riodic solutions of Eqs(1.3).
In this paper, we present three new periodic wave solu-
i1zt brut k1 +p(|bal>+[hal?) d1+ (T +$5)$1=0,  tions of Egs.(1.3) in Sec. Il. We also studied other coupled
dynamical systems, and present periodic wave solutions for a
i oyt dor— kot p(| 1|2+ | 2|2 pot+a( 3+ P3)p5=0,  special case of coupled nonlinear equations of higher order
(1.1 in Sec. lll, three periodic wave solutions for coupled
Korteweg—de Vries(KdV) equations in Sec. IV and for
wherep andq are dimensionless parameters characteristic ooupled Boussinesq equations in Sec. V. Solitary wave solu-
the medium that satisfy the relatiqgrni+ q=1, « is related to ~ tions for the corresponding coupled equations are also pre-
the birefringence of the fiber, and the subscripts 1 and 2 fogented.
¢ are to be distinguished from the subscriptszirand t, i
which denote derivatives with respect toandt, respec- Il. COUPLED NONLINEAR SCHRO DINGER (CNLS)
tively. Christodoulides and Josepi] and Florjanczyk and EQUATIONS
Tremblay [5] showed that we may first search for the

stationary-wave solution of the form As we mentioned above, four periodic wave solutions

have been found previously for the dynamical CNLS equa-
tions (1.3). Because the regimes for which the solutions ap-
ply were not explicitly given in some cases, we shall present
) them here, with the specifications for the regimes in which

$2(z,)=y(Hexpiz), (1.2 they apply, with the three new solutions we found. The seven

) solutions, numbered) to (VII), are presented in the order

where ) is a real constant, ansl(t) and y(t) are (rea)  that appears to be most natural; the first three are “single”
the following, which we shall call thelynamicalcoupled  terms of a single Jacobian elliptic functigaf modulusk),

$1(2,) =x(1)exp(i02),

nonlinear Schrdinger equations: while the remaining four are “product” solutions in which
. each of thex(t) andy(t) is expressed in terms of product of
X—Ax+(x*+y?)x=0, (1.3 two Jacobian elliptic functions. SolutiofV) was given by
' Florjanczyk and Trembley5] and solutions(l), (IV), and
y—By+ (x?+y?)y=0, (VI) were given by Kostov and Uzund¥]. Solutions(ll),
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TABLE I. Three solutiongA), (B), and(C) for coupled NLS, KdV, and Boussinesq equations.

A) (B) ©

€ +1 +1 -1

(o3 <0 <0 >0

b, >0 >0 <0

b, <0 <0 <0
|by|=2]b,| 2|by|=|b,|=3|by)| |b,|=|b,|

k? (RS 2/by|—|by] 2lby|+]by
2|by|—by| by + by by +2]by|

a 3V35(2|by| —by]) 3V35(lbg|+ b)) 3V3([ba|+2]by))

f, sh(aé k) k sn(aé k) (k/k")en(ag k)

f, cn(aé,k) dn(ag,k) (1K")dn(aé k)

(1), and (VIl) are the new ones. In all the solutions pre- It is valid in the regime where 8/7<B<4A.

sented, we assuni&>A>0, and more restrictive conditions

apply for some.

() x=Cy sn(at,k), y=C, cn(at,k), where a?=(B
—A)/K?, C2=a?—2a%K?+B, Ci=a’+a’k*+A; it is
valid in the regime wher€2<C3, C2<B, C2=A, andC3
—A=2(-C2+B).

(I) x=C1k sn(at,k), y=C, dn(at,k), where a®>=B
—A, Ci=—2a’+a%k?+B, C5=a?+a?k?>+A; it is valid
in the regime wher€2<C3, C2<B, C5=A, 2(—C3+B)
=C2-A=1(-C2+B).

(1) x=C,(k/K)cn(at,k), y=C,(1/k')dn(at,k), where
a?=(B—A)/k'?, C2=2a”—a’k?-B, Ci=a’-2a%?

+A, and where’ is the complementary modulus; it is valid

in the regime wher€2<A.

(IV) x=Ck sn(at,k)cn(at,k), y=C cn(at,k)dn(at,k),
where C?=2(4B—A)/5, a?=(B—A)/3, k*=(4B
—A)/[5(B—A)]; it is valid for B=4A.

(V) x=C sn(at,k)dn(at,k), y=C cn(at,k)dn(at,k),
where C2=2(4B—A)/5, a?=(4B—A)/15, k?=5(B
—A)/(4B—A); it is valid for A<B=<4A.

(V) x=Ca?k? sn(at,k)cn(at,k), y=Ca? dré(at,k)
+C;, where C2=18/(B—A), C;=C(—B+4A)/5, o?

=(1/10)2B—3A+ \/3(B?—A?)],
2\/§ (B2—A?)
3 .
= ,
\/5 (B2—A?%)+2B—3A

it is valid for B=4A.
(VII) x=Ca?k sn(at,k)dn(at,k), y=Ca? drd(at,k)
+C;, whereC?=18/(B—A),

C
Ci=3 [5V3(B*~A%)+3(B-A)],

V3(B?-A?)+2B—3A
2V5(B*-A%)

k2=

a?=i\3(B7-A7), K=

For Eqs.(1.3), besides the Hamiltoniafi.4), which is the
first invariant, the second invarian] is |=(xy—xy)?
+ (A—B)(2x?—2AX2+ x*+ x%y?).

The seven solutions for andy thus provide seven soli-
tary wave solutions for Eq$1.1). As shown by Florjanczyk
and Trembley[5], the following substitutions

Di=(Pp1+id)IV2, Dr=(P1—i¢y)IV2,

z=(y+1)Z/2, t=+/y+1T, (2.2)
a=(y=DI(y+1), «=20l(y+1),
transform Eqs(1.1) into
i® 17+ 3@ 77+ oD+ (| Oy *+ 7| D,|*) P, =0, 2.2

iyt 5P+ 0@+ (| D2+ | D4 D) P,=0.

For the special case af=1, we can use the transformation
suggested by Banger and Pargs],

O=V,(z,t)coq02)+iV,(z,t)sin(o2z),

T=V¥,(z,t)codoz)+iV(zt)sin(cz), (2.3
to transform Eqgs(2.2) into the standardymmetricCNLS
equations given by

W+ W+ (| W2+ [W,H) W, =0,

W o, Wt (| W 4|2+ |W,|?) ¥,=0. (2.4
In contrast to the known solutiof9] of Egs. (2.4), we
present here newuperpositionsolutions for which(a) each
of the ¥, and V¥, is expressed in terms of the sum of two
solitary wavesf,(¢) andf,(&), where
§=2(t—2/v), (2.9
andv is the velocity of the waves, an@) there are three
different pairs of elliptic functions foff1(£¢) and f,(£) ap-
plicable to various regimes. A factor of 2 has been inserted
for the definition of ¢ in Eq. (2.5 because Table | to be
presented will be shown to be applicable also for other dy-
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namical systems for whiclf is defined differently. Specifi- ¢4(z,t) and ¢,(z,t), which propagate along theaxis sat-

cally, the superposition solutions are expressed by isfy the following coupled nonlinear equations:
) 2, 422, _

t G127t B~ Ad1t (d1+ ¢3)°¢41=0,

v,.=> cmnfn(g)exp[i( Kozt 50| |, m=1.2, ter T LT (3.3
=1

" 2.6 G2zt Bbau— Aot (d1+ §5)°h2=0.

where the four amplitude€,,, are required to satisfy A solitary wave solution of EQ3.3) where#, (&) and¢,(£)
depend oré=z—vut, v being the velocity of the waves, can

C11C 1o+ C21Cyp=0, (2.7  be easily deduced. It igh;={C[dn(y£,k)+cn(y£,k) 1},

bo={Cldn(y£ k) —cn(y£,K) [} where  y2=4A/[(2
but none of them needs to be equal to zero generally. Let us k?)(1+ Bv?)], C?=3A/[4(2—k?)], 0=<k?<1.
define

IV. COUPLED KORTEWEG —-DE VRIES EQUATIONS

by=—Ki=72+ Ci,+C3, Consider the dynamical coupled KdV equations given by

1 X1+IBX1+ R(X1+X2)X1:O, (4 1)
by=—K,— —5 +&(C2,+C2)), . . '
2 2~ g2 te(Cut €2 Xp+ BXo+ R(X1 4 X5)X,=0,

c,=C2+C3,—&(C3,+C3,), (2.8  whereB andR are real constants and where for later nota-
tional purposes, we have replacedandy by x; and x,,
wheree can be equal ta-1 or — 1. The three different pairs respectively. Our analytic periodic solutions are expressed in
of elliptic functions forf,(¢) and f,(¢) are given, in col- the form
umns markedA), (B), and(C), together with the conditions

. . . T . . 2
that specify the regimes in which they are applicable, in 2
Table I. A condition Xm=m§=:1 Cinfh, m=12, (4.2)
g|by|+ by =3]c,] 2.9

where theC'’s are constants anfd (t) andf,(t) will be given

must be satisfied for any one of the soluti@as, (B), or (C), in terms of Jacobian elliptic functions. First let us define

which imposes another condition, besides Ej7), on the b;=(Cyo+ Co)R+ 3, (4.39
amplitudes of the waves. Substituting thg¢) and f,(&)
from Tablell into Eq.(2.6), anq substituting Eq(2.6) into b,=&(Cyy+Cy)R+ B, (4.3
Egs. (2.3 give three new solutions of Eq&.2) for the spe-
cial case ofy=1. C1=[C11+ Cy—&(Cyo+ Cy) IR, (4.30
. A SPECIAL CASE OF COUPLED NONLINEAR Three different pairs of elliptic functionf;(t) andf,(t) for
EQUATIONS OF HIGHER ORDER Egs.(4.2) are given, together with the conditions that specify

the regimes in which they are applicable, in Table |, where
Instead of Eq.(1.4) for a coupled quartic oscillator sys- s replaced byt.

tem, let us consider a circularly symmetric coupled sextic The corresponding coupled KdV equations f§(z,t)

oscillator system whose Hamiltonian is and ¢,(z,t) are
H=20¢4+y%) = 3A0CHY) +50+y)° - (3.0 $razzt B dut R($1+ d2) $1,=0, s
for which the coupled equations of motion are G222+ B’ t R(P1+ d2) 2, =0.
X—Ax+(x*+y?)?x=0, (3.2 The solitary wave solutions of E¢4.4) for which ¢,(&) and
. ' ¢,(€) depend on
y—Ay+(x2+y?)2y=0.
§=z—ut (4.5

SinceH can be expressed ir= (x?+y?) Y2 only, it is clearly _ _ _
an integrable system. We have found a simple analytic perionly, wherev is the velocity of the waves, can be written
odic solution of Egs.(3.2) for the caseA>0; it is x ~ down as in Egs(4.2. The solutions of Eqs(4.4) are ob-
={C[dn(at,k) +cn(at,k)[}¥2  y={C[dn(at,k)—cn(at, tained by replacingn(t) by ¢m(£), fn(t) by fn(£), in Egs.
K)]}Y2 where a?=4A/(2—k?), C2=3A/[4(2-k?)], 0 (4.2, whereis given by Eq.(4.5), i.e.,
<k?<1. The second invariant is obviously the angular mo- 2
tum I =xy—xy, which f lution i [t

gcezrll’ljlm xy—xy, which for our solution is equal to d’m:nZl Conf2.

Applications of the above result can be seen from the
following example. Suppose two real field componentsinstead of Eqs(4.3), theb’s andc are here defined by

(4.9
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b;=(Cy,+Cy)R—B'v, (4.79 Solitary wave solutions of Eqg5.2) in which ¢4(¢) and
$,(€) depend oré=z—vt only [the same definition of as
b,=¢&(Cy1+Cy)R—B'v, (4.7  defined by Eq(4.5] can be expressed as in E¢4.6). In-
stead of Egs(4.7), theb’s andc are here defined by
€1=[C11+Cy1—&(C1ot+Cx) |R. 4.7
1 [ 11 21 ( 12 22)] ( Q bl:(C12+C22)R+a'+,[)’/vz, (533
Table | gives three solutions of E¢}.6) for Eq. (4.4). Note
that& is defined here by Eq4.5), which is different from the b,=&(Cyy+Co)R+a’ + B'v?, (5.3b
¢ defined by Eq(2.5) for the CNLS equations.
€1=[C11+Co1—e(Co+Cor) JR. (5.309

V. COUPLED BOUSSINESQ EQUATIONS

Consider the dynamical coupled Boussinesq equation

given by

Xygee + BXa T RI(X1+X2) X111 =0, 5.1)

Xttt + BXott T RL (X1 +X2) X2t ] = 0.

With these definitions ob’s andc, Egs.(4.6) and Table |
heref is defined by Eq(4.5] give three solutions of Egs.
5.2).

Our solutions reveal a great deal of similarity between the
solutions of coupled KdV and coupled Boussinesq equations.
Finally, we remark that(i) the prospect that shape-

preserving Jacobian elliptic “pulse trains” in optical fibers

) . can be produced and observed appears to have become a real
As for the dynamical coupled KdV equations, we found anapossibility following the first experimental observation of the
lytic periodic solutions of Egs(5.1) in the form expressed evolution of an arbitrarily shaped input optical pulse-train to

also by Eqgs(4.2). With theb’s andc defined as in Eqg4.3
whereB andR are now constants appearing in E¢s1), the
same three pairs of elliptic functiorig(t) andf,(t) given in
Table | (where¢€ is replaced byt) substituted into Eq94.2)
give solutions of Eqgs(5.1), for the three regimes in which
they are applicable.

The corresponding coupled Boussinesq equations are

D17227t @' 1+ B b1+ Rl (P1+ &2) h1,1,=0, (5.2
D22227t @' Pyt B’ o+ RI(d1+ ¢h2) d2,],=0.

the shape-preserving Jacobian elliptic pulse-train corre-
sponding to the Maxwell-Bloch equations, as reported re-
cently by Shultz and Saland0]; and (ii) the possibility of
controlling the pulse propagation by varying the amplitudes
(the C’s in the solutions presentgaf the coupled waves
[11] should find practical applications in the near future.

ACKNOWLEDGEMENT

This research was supported by NSF Grant No. PHY-
9507837.

[1] See, e.g., H. Yoshida, B. Grammaticos, and A. Ramani, Acta [7] D. V. Choodnovsky and G. V. Choodnovsky, Lett. Nuovo Ci-

Applicandae Math8, 74 (1987; S. Ichtiaroglou, Celest. Mech.
65, 21 (1997, and many of the references cited.

[2] J. Hietarinta, Phys. Refi.47, 87 (1987).

[3] See, e.g., G. P. AgrawaNonlinear Fiber Optics(Academic
Press, New York, 1995and the references cited.

[4] D. N. Christodoulides and Joseph, Opt. L&®, 53(1988; D.
N. Christodoulides, Phys. Lett. A32, 451 (1988.

[5] M. Florjanczyk and R. Tremblay, Phys. Lett. A4l 34
(1989.

[6] N. A. Kostov and I. M. Uzunov, Opt. Commur89, 389
(1992.

mento 22, 47 (1978; H. Grosse, Acta. Phys. AustB2, 89
(1980; J. Hietarinta, Phys. Ref.47, 87 (1987.

[8] P. A. Bdanger and C. ParéPhys. Rev. Ad1, 5254(1990.

[9] S. V. Manakov, Sov. Phys. JET38, 248 (1974.

[10] J. L. Shultz and G. J. Salamo, Phys. Rev. L&, 855
(1997.

[11] F. T. Hioe and R. Grobe, Phys. Rev. Lef3, 2559 (1994);
R. Grobe, F. T. Hioe, and J. H. Eberipid. 73, 3183(1994;
F. T. Hioe and C. E. Carroll, Phys. Lett. A99 145
(1995.



